|
× = 2 |- |bgcolor=#e7dcc3|Coxeter diagrams|| |- |bgcolor=#e7dcc3|Cells||25 decagonal prisms |- |bgcolor=#e7dcc3|Faces||100 squares, 20 decagons |- |bgcolor=#e7dcc3|Edges||200 |- |bgcolor=#e7dcc3|Vertices||100 |- |bgcolor=#e7dcc3|Vertex figure||Tetragonal disphenoid |- |bgcolor=#e7dcc3|Symmetry||, order 800 |- |bgcolor=#e7dcc3|Dual||10-10 duopyramid |- |bgcolor=#e7dcc3|Properties||convex, vertex-uniform, Facet-transitive |} In geometry of 4 dimensions, a 10-10 duoprism is a polygonal duoprism, a 4-polytope resulting from the Cartesian product of two decagons. It has 100 vertices, 200 edges, 120 faces (100 squares, and 20 decagons), in 20 decagonal prism cells. It has Coxeter diagram , and symmetry [[10,2,10]], order 800. ==Images== The uniform ''10-10 duoprism'' can be constructed from ()×() or ()×() symmetry, order 400 or 100, with extended symmetry doubling these with a 2-fold rotation that maps the two orientations of prisms together. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「10-10 duoprism」の詳細全文を読む スポンサード リンク
|